Category Archives: hyperbolicity of complexes

An even shorter proof that curve graphs are hyperbolic

In this post I described the Hensel-Przytycki-Webb proof that curve graphs are (uniformly) hyperbolic. Their methods actually apply to the arc graph, and then they used a clever evil trick due to Harer that involves adding an artificial puncture to … Continue reading

Posted in hyperbolicity of complexes | Leave a comment

Hyperbolicity of the curve graph: the proof from The Book

In this post I’ll talk about a lovely paper by Sebastian Hensel, Piotr Przytycki and Richard Webb. They show that all curve graphs are 17-hyperbolic. Hyperbolicity of curve graphs is a very very very useful* property because mapping class groups … Continue reading

Posted in guessing geodesics, hyperbolicity of complexes | 3 Comments